Картинки органов выделения

0 Comment

Строение и функции органов выделения человека

Презентация "Органы выделения" - скачать бесплатно

Жизнедеятельность нашего организма обеспечивает слаженная работа систем органов.

Немаловажную роль в регуляции и выполнении всех функций играют органы выделения человека.

Природа наградила нас специальными органами, которые способствуют выведению из организма продуктов метаболизма.

  • почек,
  • мочевого пузыря,
  • мочеточников,
  • мочеиспускательного канала.
  • В данной статей мы подробно рассмотрим органы выделения человека и их строение и функции.

    Почки

    Эти парные органы располагаются на задней стенке брюшной полости, по обеим сторонам позвоночника. Почка – парный орган.

    материалы к уроку ""Для чего и как мы дышим"" (4 класс)

    Внешне она имеет бобовидную форму, а внутри— паренхиматозную структуру. Длина одной почки не более 12 см, а ширина  — от 5 до 6 см. В нормемасса почки не превышает 150-200 г.

    Строение

    Оболочка, которая покрывает почку снаружи, называется фиброзной капсулой. На саггитальном разрезе можно увидеть два различных слоя вещества. Тот, который расположен ближе к поверхности, называется корковым. а вещество, занимающее центральное положение – мозговое .

    Они имеют не только внешнее различие, но и функциональное. Со стороны вогнутой части располагаются ворота почки и лоханка. а также мочеточник .

    Через почечные ворота почка сообщается с остальным организмом посредством входящей почечной артерии и нервов, а также выходящих лимфатических сосудов, почечной вены и мочеточника.

    Совокупность этих сосудов называется почечной ножкой. Внутри почки различают почечные доли. В каждой почке имеется 5 штук. Почечные доли отделены друг от друга кровеносными сосудами.

    Чтобы достаточно ясно понимать выполняемые функции почек, необходимо знать и их микроскопическое строение .

    Главной структурно-функциональной единицей почек является нефрон .

    Количество нефронов в почке достигает 1 млн. Нефрон состоит из почечного тельца. которое расположено в корковом веществе, и системы канальцев. которые в конечном итоге впадают в собирательную трубку.

    В нефроне также выделяют 3 сегмента :

    Важно!

    Для лечения почечных заболеваний наши читатели успешно используют метод Галины Савиной .

  • проксимальный,
  • Выделение 8 класс

  • промежуточный,
  • дистальный.
  • Сегменты вместе с восходящими и нисходящими коленами петли Генле залегают в мозговом веществе почки .

    Чтобы убедиться, что у вас болят именно почки, нужно знать, где находятся почки у человека.

    Удвоение почки — это наследственное заболевание, которое может принести проблемы при отсутствии правильного лечения. Почему возникает патология и как ее лечить — об этом читайте здесь .

    Наряду с главной выделительной функцией. почки также обеспечивают и выполняют:

  • поддержание на стабильном уровнерН крови. ее циркулирующий объем в организме и состав межклеточной жидкости;
  • благодаря метаболической функции. почки человека осуществляютсинтез многих веществ. важных для жизнедеятельности организма;
  • образование крови. путем продуцирования эритрогенина;
  • синтез таких гормонов. как ренин, эритропоэтин, простогландин.
  • Мочевой пузырь

    Орган, который накапливают мочу, поступающую по мочеточникам и выводящий ее через уретру, называется мочевым пузырем. Это полый орган, который располагается внизу живота, сразу за лобком.

    Мочевой пузырь округлой формы, в котором различают

    Органы выделения - Презентация 183019-14

    Последняя сужается, переходя, таким образом, в мочеиспускательный канал. При наполнении стенки органа растягиваются, давая сигнал о необходимости опорожниться.

    Когда мочевой пузырь пустой, его стенки утолщаются, при этом слизистая оболочка собирается в складки. Но есть место, которое остается не сморщенным – это треугольный участок между отверстием мочеточника и отверстием мочеиспускательного канала.

    Функции

    Мочевой пузырь выполняет функции:

  • временного накопления мочи ;
  • выведение мочи — объем накапливаемой мочи пузырем составляет 200-400 мл. Каждые 30 секунд моча притекает в мочевой пузырь, но время поступления зависит от количества выпитой жидкости, температуры и так далее;
  • благодаря механорецепторам, которые находятся в стенке органа, осуществляется контроль количества мочи в пузыре. Их раздражение служит сигналом для сокращения пузыря и выведения мочи наружу.
  • Источник: http://1pochki.ru/mkb/anatomiya/organy-vydelenia-cheloveka.html

    Анатомия человека

    Современная анатомия накопила большой материал по прижизненному строению органов, полученный с помощью рентгеноскопии  и рентгенографии (рентгеноанатомия).

    Данный раздел сайта является учебным пособием по анатомии человека в картинках. В нем излагаются вопросы по истории анатомии, общие вопросы, строение опорно-двигательного аппарата, пищеварительной, дыхательной, мочеполовой систем и железы внутренней секреции. Далее  излагаются строение сердечно-сосудистой системы, лимфатическая система, центральная нервная система с проводящими путями, периферическая нервная система, головные нервы, вегетативная нервная система, органы чувств. Материал изложен по системному принципу, в каждом разделе отмечены функциональные и топографоанатомические особенности, органогенез, возрастные особенности, аномалии развития, приводятся сравнительно-анатомические данные. Анатомический атлас иллюстрирован цветными картинками и схемами.

    Настоящее учебное пособие «Анатомия человека» рассчитано на студентов медицинских институтов и соответствует учебной программе. Материал учебника изложен таким образом, что первоначально разбираются частные вопросы, затем эмбриологические и филогенетические данные. Во многих разделах содержатся сведения о возрастных, топографических и функциональных особенностях органов. Приводимые в других учебниках сводные данные о кровоснабжении и иннервации в настоящем пособии опущены в связи с тем, что в период изучения внутренних органов студенты еще незнакомы со строением кровеносной и лимфатической систем, а также нервной системы. Подобный материал полезен для врачей и должен излагаться в руководстве или в крайнем случае в учебнике топографической анатомии. В данном пособии разделы, касающиеся строения костей, связочного аппарата и мышц, изложены более кратко, а строение внутренних органов — более детально. Это связано с тем, что врач в практике чаще сталкивается с заболеваниями внутренних органов.

    Презентация по анатомии домашних животных на тему "Органы мочевыделения"

    Пособие имеет много иллюстраций, которые помогут усвоению материала. Естественно, что целью обучения является не заучивание многих анатомических терминов, которые без должного подкрепления со временем совершенно забудутся, а понимание общего плана строения человека. Анатомия представляет часть биологии, поэтому строение всех органов, систем, живой организм в целом рассматриваются в аспектах их развития и функциональных взаимоотношений. Изучение анатомии человека с правильных методологических позиций с первых дней знакомства с медициной должно способствовать формированию материалистического мышления и мировоззрения врача, так как анатомия вместе с биологией, гистологией, физиологией, патологией и биохимией составляет фундамент теоретической подготовки. Как и всякая наука, анатомия включает вопросы прикладного значения, важные для клинической медицины, биологические вопросы, нужные для расширения врачебного кругозора и нужные для того, чтобы ответить на естественный вопрос: «Как же устроен человек?» Существует мнение, что анатомия человека якобы трудна. Наши знания о самом совершенном и замечательном создании природы, каким является человек, сегодня еще неполны, но, как показывает история анатомии, они были еще более примитивными 2000—3000 лет назад. И если на пути познания строения человека много достигнуто, то лишь благодаря уму человека в его любознательности. Когда-то ученые были счастливы, если им удавалось заглянуть во чрево существа, себе подобного, теперь же, призвав на помощь современные достижения прикладных и фундаментальных наук, они раскрывают молекулярные сочетания и познают свою собственную природу. На этих путях много трудностей и много радостей. Познание строения человека является внутренней потребностью студента, посвятившего свою жизнь самому благородному делу — избавлению человечества от страданий, избравшего профессию врача, которая, начиная с древних времен требует от человека отдачи всей полноты нравственных и интеллектуальных сил.

    Содержание анатомии

    Человек претерпел сложную биологическую эволюцию и объединил в себе с биологической стороны природно-естественное, а с исторической — социально-общественное существо. Его строение и функции полностью познаются биологией и социальными законами. Анатомия человека принадлежит к биологическим наукам. Анатомия человека представляет науку, изучающую происхождение, развитие, внешнее и внутреннее строение, функциональные особенности живого человека. Анатомия человека ставит своей задачей описание формы, макроскопического строения, топографии органов с учетом половых, индивидуальных, конституциональных особенностей организма, а также филогенетических (от phylon — род, genesis — развитие) и онтогенетических (от ontos — особь) моментов развития. Изучение строения человека проводится с позиций целостного организма. Анатомия привлекает и данные антропологии — науки о человеке. Антропология рассматривает у человека не только возрастные, половые и индивидуальные особенности, но и расовые, этнические, профессиональные, изучает социальные влияния, выясняет факторы, определяющие историческое развитие человека. Таким образом, биология рассматривает человека с эволюционных позиций, что играет роль в формировании материалистического мировоззрения советского врача.

    Анатомия человека имеет важное прикладное значение для медицины. Анатомия вместе с гистологией, физиологией, биохимией и другими дисциплинами составляет основу теоретических знаний в подготовке врача. Выдающийся физиолог И. П. Павлов отметил, что, только познав строение и функции органов, мы можем правильно понять причины болезней и возможности их ликвидации. Без знания строения человека невозможно понять изменения, вызванные болезнью, установить локализацию патологического процесса, провести хирургические вмешательства, а следовательно, правильно диагностировать заболевания и лечить больных. По этому поводу еще 170 лет назад весьма образно высказался один из выдающихся русских врачей Е. Мухин (1766—1850): «Врач не анатом не только бесполезен, но и вреден». Когда в период схоластики и влияния религии (XIII век) врачам запретили вскрывать трупы и изучать хотя бы основы анатомии, знания врачей были настолько примитивны, что общественность требовала у церкви разрешения на вскрытие трупов.

    Каково же содержание анатомии? Термин «анатомия» происходит от древнегреческого слова anatemnein — рассекаю, расчленяю. Это объясняется тем, что первым и основным методом исследования человека был метод расчленения трупа. В настоящее время, когда исследователь привлекает для познания внутреннего и внешнего строения живого человека многие другие методы, анатомия не соответствует содержанию своего названия. Тем не менее и ныне для описания строения и топографии органов применяется препарирование трупа, являющееся одним из методов изучения формы и строения. Однако строение органов и их функции полностью можно познать только при сочетании многих методов исследования.

    1.       С помощью метода антропометрии можно измерить рост, взаимоотношение частей, установить массу тела, конституцию, индивидуальные особенности строения человека, его расу.

    2.       Методом препарирования удается послойно рассечь ткани с целью их изучения и выделить из окружающих тканей и клетчатки мышцы, кровеносные сосуды, нервы и другие образования, видимые невооруженным глазом. Этот метод позволяет получить данные о форме органов, их взаимоотношениях.

    3.       Методом инъекции заполняются окрашенной массой, разведенной олифой, керосином, бензином, хлороформом, эфиром или другими растворителями полости тела, просвет бронхиального дерева, кишечника, кровеносных и лимфатических сосудов. Метод впервые применен в XVI веке. Для инъекции используются и твердеющие массы в виде латекса (жидкий каучук), полимеров, расплавленного воска или металла. Благодаря методу инъекции в значительной степени были расширены знания о строении сосудистой системы. Метод инъекции оказался особенно полезным в тех случаях, когда производятся последующая коррозия, просветление органов и тканей.

    4.       Метод коррозии впервые применен Сваммердамом (XVII век), а в России — И. В. Буяльским. Орган с кровеносными сосудами, наполненными затвердевшей массой, погружался в теплую воду и долгое время выдерживался в ней. Окружающие ткани сгнивали и оставался только слепок затвердевшей массы. Этот процесс может быть ускорен, когда ткани разрушаются концентрированной кислотой или щелочью, что применяется в настоящее время. С помощью метода коррозии можно увидеть истинную форму полости, куда вливалась масса. Недостатком метода является то, что слепок полости не взаимосвязан с тканями.

    5.       Метод просветления. После обезвоживания тканей препарат пропитывается жидкостью. В этом случае коэффициент преломления пропитанной ткани приближен к коэффициенту преломления жидкости. Инъецированные кровеносные сосуды или окрашенные нервы будут видны на таких относительно прозрачных препаратах. Преимущество этого метода перед коррозионным заключается в том, что в просветленных препаратах сохраняется пространственное расположение кровеносных сосудов или нервов.

    6.       Микроскопический метод, при котором используется сравнительно небольшое увеличение, в настоящее время получил большое распространение в анатомии. Благодаря применению этого метода удалось увидеть образования, которые нельзя выявить на гистологических срезах. Например, методом микроскопической анатомии выявлены сети кровеносных и лимфатических капилляров, внутриорганные сплетения кровеносных сосудов и нервов, уточнены структура и форма долек, ацинусов и т. д.

    7.       Методами рентгеноскопии и рентгенографии удается изучить прижизненную форму и функциональные особенности органов у живого человека. Эти методы также успешно применяются при исследовании на трупе. Очень широко в клинической практике и эксперименте используется комбинация инъекции контрастных веществ с последующей рентгенографией. За счет подобного контрастирования более четко выделяются на экране или отпечатываются на рентгеновской пленке изучаемые образования.

    8.       Метод просвечивания отраженными лучами главным образом применяется на живом человеке, например для изучения кровеносных капилляров кожи, слизистых оболочек (капилляроскопия), сосудов сетчатки глаза.

    9.       Метод эндоскопических исследований позволяет с помощью приборов, введенных через естественные и искусственные отверстия, рассмотреть окраску, рельеф органов и слизистой оболочки.

    10.     Экспериментальный метод в анатомии применяется для выяснения функционального значения органа, ткани или системы. Он позволяет установить пластичность тканей, их восстановительные способности и т. д. С помощью эксперимента можно получить много новых данных по перестройке органов и организма в ответ на внешние воздействия.

    Презентация "Выделение 6 класс" - скачать бесплатно

    11.     Математический метод часто используется при анатомических исследованиях, так как в отличие от других методов он позволяет вывести более достоверные количественные показатели. С развитием электронно-вычислительной техники математические методы займут ведущее место в морфологических исследованиях.

    12.     Метод иллюстрирования применяется для передачи точного документального изображения или в виде создания схематизированных рисунков анатомических структур. Точные анатомические данные можно документировать путем фотографирования с последующим изготовлением фотоотпечатков или черно-белых или цветных диапозитивов (слайды), которые проецируются на экран. Во время препарирования многие анатомические структуры, особенно находящиеся в различных плоскостях, невозможно сфотографировать. В этих случаях производится точная зарисовка препарата. Иногда необходимо создавать схемы. Создание анатомических схем обусловлено тем, что ни фотографии, ни точные рисунки не передают внутреннюю архитектуру органа, например строение желез, топографию проводящих путей головного и спинного мозга и др. Схематический рисунок представляет наиболее сложную форму подготовки иллюстраций. Эта сложность обусловлена тем, что схемы создаются на основе данных, полученных методами препарирования, гистологических, гистохимических, электронографических и экспериментальных исследований и клинических наблюдений. Синтезируя данные многих методов, удается создать схематические рисунки.

    В анатомических исследованиях в настоящее время широко используется и киносъемка, особенно при документации движущихся объектов. Этим методом возможно документировать последовательность вскрытия и препарирование трупа, топографо-анатомические данные. Методом киносъемки наглядно можно показать функциональные нарушения при экспериментальных исследованиях: движение крови, лимфы, выделение мочи, слюны, функцию опорно-двигательного аппарата и др.

    13.     Метод ультразвукового сканирования сравнительно новый и еще недостаточно используется в анатомических исследованиях. В настоящее время применяется в клинической практике с целью выявления топографии и формы органов при патологических состояниях, положения плода в утробе матери, рельефа полости черепа, спинномозгового канала, гнойных полостей, эхинококковых пузырей, камней желчевыводящей и мочевой системы, а иногда и опухолевых узлов.

    14.     Метод голографии применяется для получения объемного изображения объекта с помощью лазерных лучей. Представляет собой новое методическое направление в технике научных исследований и сыграет значительную роль в развитии морфологической науки.

    Важнейшее требование науки, базирующейся на основах диалектического материализма,— исследование вещей и явлений в их происхождении и развитии с применением исторического метода. В.И.Ленин нацеливал ученых, что на вещи надо смотреть с исторических позиций: «. Подойти к вопросу с точки зрения научной,— это не забывать основной исторической связи, смотреть на каждый вопрос с точки зрения того, как известное явление в истории возникло, какие главные этапы в своем развитии это явление проходило, и с точки зрения этого его развития смотреть, чем данная вещь стала теперь» При историческом подходе используются материалы антропологии, палеонтологии, сравнительной анатомии, эмбриологии, что позволяет изучать человека как существо социально-общественное, прошедшее сложную эволюцию, активно приспосабливающееся к природе и изменяющее свои психофизиологические особенности под влиянием социальных условий развития общества.

    Анатомию человека методически можно изучать различно: по отдельным системам (систематическая анатомия); описывать только внешнюю форму человека (пластическая, или рельефная, анатомия); исследовать строение органов и систем в зависимости от их функций (функциональная анатомия); изучать взаиморасположение систем и органов с учетом возрастных и индивидуальных особенностей (топографическая анатомия), изучать строение органов в различные возрастные периоды (возрастная анатомия).

    Систематическая анатомия главным образом излагает форму, строение, топографию, возрастные особенности, индивидуальные различия, развитие и аномалии, филогенетические особенности по отдельным системам. Подобный подход в изучении анатомии наиболее приемлем для тех, кто не знаком с предметом, так как сложное раскладывается на составные части.

    Пластическая анатомия содержит сведения о внешних формах тела, которые определяются развитием костного скелета, выступающих бугров и гребней, прощупываемых через кожные покровы, контурами мышечных групп и тонусом мышц, эластичностью и цветом кожи, глубиной ее складок, толщиной подкожной жировой клетчатки. Состояние внутренних органов изучается только в таком объеме, чтобы показать, как это отражается на внешнем строении. Пластическая анатомия имеет прикладное значение не только для художников и скульпторов, но и для врачей, так как по внешним формам можно судить и о состоянии здоровья человека.

    Функциональная анатомия дополняет данные описательной анатомии. Она ставит задачей изучение строения органов и систем в единстве с функцией, рассматривая тело человека в динамике, выявляя механизмы перестройки формы под влиянием внешних факторов.

    Топографическая анатомия изучает строение человека по отдельным областям, пространственное соотношение органов и систем с учетом индивидуальных и возрастных особенностей. Элементы топографической анатомии обязательно сопутствуют систематическому изложению материала.

    Возрастная анатомия изучает строение человека в различные возрастные периоды. Под влиянием возраста и внешних факторов с определенной закономерностью изменяются строение и форма органов человека.

    У детей первых лет жизни, взрослых и пожилых людей отмечаются значительные различия в анатомическом строении. В клинической практике даже возникли самостоятельные дисциплины, например педиатрия — наука о ребенке, гериатрия — наука о пожилом человеке.

    Презентация по биологии на тему "Земноводные&quot

    Вместе с описательной анатомией человека необходимо изучать (хотя бы в общих чертах) анатомию беспозвоночных и позвоночных животных — сравнительную анатомию. На основе данных сравнительной анатомии можно понять эволюцию и развитие живых существ. Оперируя сравнительно-анатомическими данными и данными эмбриологии, которые излагаются преимущественно в стадии органогенеза, удается находить общие признаки, способствующие пониманию истории развития человека, его органов и систем.

    Источник: http://medical-enc.ru/1/anatomia.shtml

    Органы выделения

    1. Органы выделения, их участие в поддержании важнейших параметров внутренней среды организма (осмотическое давление, рН крови, обьем крови и др.). Ренальные и экстраренальные пути экскреции.

    Процесс выделения имеет важнейшее значение для гомеостаза, он обеспечивает освобождение организма от конечных продуктов обмена, которые уже не могут быть использованы, чужеродных и токсичных веществ, а также избытка воды, солей и органических соединений, поступивших с пищей или образовавшихся в результате обмена веществ (метаболизма). В процессе выделения у человека участвуют почки, легкие, кожа, пищеварительный тракт.

    Органы выделения. Основное назначение органов выделения состоит в поддержании постоянства состава и объема жидкостей внутренней среды организма, прежде всего крови.

    Почки удаляют избыток воды, неорганических и органических веществ, конечные продукты обмена и чужеродные вещества. Легкие выводят из организма СO2. воду, некоторые летучие вещества, например пары эфира и хлороформа при наркозе, пары алкоголя при опьянении. Слюнные и желудочные железы выделяют тяжелые металлы, ряд лекарственных препаратов (морфий, хинин, салицилаты) и чужеродных органических соединений. Экскреторную функцию выполняет печень, удаляя из крови ряд продуктов азотистого обмена. Поджелудочная железа и кишечные железы экскретируют тяжелые металлы, лекарственные вещества.

    Железы кожи играют существенную роль в выделении. С потом из организма выводятся вода и соли, некоторые органические вещества, в частности мочевина, а при напряженной мышечной работе — молочная кислота (см. главу И). Продукты выделения сальных и молочных желез — кожное сало и молоко имеют самостоятельное физиологическое значение — молоко как продукт питания для новорожденных, а кожное сало — для смазывания кожи.

    2. Значение почек в организме. Нефрон – морфо-функциональная единица почки. Роль его различных отделов в образовании мочи.

    Главная функция почек — образование мочи. Структурно-функциональной единицей почек, осуществляющей эту функцию, является нефрон. В почке весом 150г их 1-1,2 млн. Каждый нефрон состоит из сосудистого клубочка, капсулы Шумлянского-Боумена, проксимального извитого канальца, петли Генле, дистального извитого канальца и собирательной трубочки, которая открывается в почечную лоханку. Более подробно о строении почки см. Гистологию.

    Почки очищают плазму крови от некоторых веществ, концентрируя их в моче. Значительная часть таких веществ являются 1) конечными продуктами обмена (мочевина, мочевая кислота, креатинин), 2) экзогенными соединениями (лекарства и т.д.), 3) веществами, необходимыми для жизнедеятельности организма, но содержание которых должно соблюдаться на определенном уровне (ионы Na, Ca, P, вода, глюкоза и др.). Объем экскреции подобных веществ почками регулируется специальными гормонами.

    Таким образом, почки участвуют в регуляции водного, электролитного, кислотно-щелочного, углеводного равновесия в организме, способствуя поддержанию постоянства ионного состава, рН, осмотического давления. Следовательно, главная задача почки заключается в избирательном удалении различных веществ с целью поддержания относительного постоянства химического состава плазмы крови и внеклеточной жидкости.

    Кроме этого, в почке образуются специальные биологически активные вещества, участвующие в регуляции АД и объема циркулирующей крови (ренин) и образования эритроцитов (эритропоэтины). Образование этих веществ происходит в клетках т.н.юкста-гломерулярного аппарата почек (ЮГА).

    Двусторонняя нефректомия или острая почечная недостаточность в течение 1-2-х недель приводит к смертельной уремии (ацидоз, повышение концентрации ионов Na, K,Р, аммиака и др.). Компенсировать уремию можно пересадкой почки или экстракорпоральным диализом (подключением искусственной почки).

    3. Строение клубочков, их классификация (корковые, юкстамедуллярные).

    Почки имеют 2 вида нефронов :

  • Корковые нефроны – короткая петля Генле. Располагаются в корковом веществе. Выносящие капилляры образуют капиллярную сеть, облают ограниченной способностью к реабсорбции натрия. Их в почке насчитывается от 80 до 90%
  • Юкстамедуллярный нефрон – лежат на границе между корковым и мозговым веществом. Длинная петля Генле, которая уходит глубоко в мозговое вещество. Выносящая артериола в этих нефронах имеет одинаковый диаметр с приносящей. Выносящая артериола образует тонкие прямые сосуды, глубоко проникающие в мозговое вещество. Юкстамедуллярные нефроны – 10-20%, они обладают повышенной реабсорбцией к ионам натрия.
  • Клубочковый фильтр пропускает веществ с размером 4 нм и не пропускает вещества – 8 нм. По молекулярной массе свободно проходят вещества с молекулярным весом 10000 и постепенно снижается проницаемость по мере увеличения веса до 70000 веществ, которые несут отрицательный заряд. Электронейтральные вещества могут проходить с массой до 100000. Суммарная площадь фильтрующей мембраны 0,4 мм, а общая площадь у человека, а общая площадь 0,8-1 кв м.

    У взрослого человека в состоянии покоя через почку протекает 1200 – 1300 мл в минуту. Это будет 25% минутного объема. Фильтруется в клубочках плазма, а не сама кровь. С этой целью употребляется гематокрит.

    Если гематокрит 45%, а плазма 55%, то количество плазмы составит = (0,55*1200)=660 мл /мин и количество первичной мочи = 125 мл /мин (20% от плазменного тока). За сутки = 180 л.

    Процессы фильтрации в клубочках зависят от трёх факторов :

    1. Градиент давления между внутренней полостью капилляра и капсулой.
    2. Структура почечного фильтра
    3. Площадь фильтрующей мембраны, от которой будет зависеть объемная скорость фильтрации.
    4. Процесс фильтрации относится к процессам пассивной проницаемости, которая осуществляется под действием сил гидростатического давления и в клубочках фильтрационное давление будет складывать из гидростатического давления крови в капиллярах, онкотического давления и гидростатического давления в капсуле. Гидростатическое давление = 50-70 мм рт.ст. т.к. кровь идет прямо из аорты (её брюшной части).

      Онкотическое давление – образуемое белками плазмы. Белковые молекулы, крупные, они не соизмеримы с порами фильтра, поэтому пройти через него не могут. Они будут препятствовать процессу фильтрации. Оно будет составлять 30 мм.

      Гидростатичесоке давление образовавшегося фильтрата, который находится в просвете капсулы. В первично моче = 20мм.

      ФД=Рг-(Р0=Рм)

      Рг – гидростатическое давление крови в капиллярах

      Ро-онкотическое давление

      Рм – давление первичной мочи.

      По мере движения крови в капиллярах онкотическое давление растет и фильтрация на определенном этапе прекратится, т.к. оно будет превышать силы способствующие фильтрации.

      За 1 минуту образуется 125 мл первичной мочи – 180 л за сутки. Конечной мочи – 1-1,5 л. Происходит процесс реабсорбции. Из 125 мл в конечную мочу попадет 1 мл. Концентрация веществ в первичной моче соответствует концентрации растворенных веществ в плазме крови, т.е. первичная моча будет изотонична плазме. Осмотическое давление в первичной моче и плазме одинаково – 280-300 мОс молей на кг

      4. Кровоснабжение почек. Особенности кровоснабжения коркового и мозгового слоев почки. Саморегуляция почечного кровотока.

      В обычных условиях через обе почки, масса которых составляет лишь около 0,43 % от массы тела здорового человека, проходит от 1/5 до 1/44 крови, поступающей из сердца в аорту. Кровоток по корковому веществу почки достигает 4—5 мл/мин на 1 г ткани; это наиболее высокий уровень органного кровотока. Особенность почечного кровотока состоит в том, что в условиях изменения системного артериального давления в широких пределах (от 90 до 190 мм рт. ст.) он остается постоянным. Это обусловлено специальной системой саморегуляции кровообращения в почке.

      Короткие почечные артерии отходят от брюшного отдела аорты, разветвляются в почке на все более мелкие сосуды, и одна приносящая (афферентная) артериола входит в клубочек. Здесь она распадается на капиллярные петли, которые, сливаясь, образуют выносящую (эфферентную) артериолу, по которой кровь оттекает от клубочка. Диаметр эфферентной артериолы уже, чем афферентной. Вскоре после отхождения от клубочка эфферентная артериола вновь распадается на капилляры, образуя густую сеть вокруг проксимальных и дистальных извитых канальцев. Таким образом, большая часть крови в почке дважды проходит через капилляры — вначале в клубочке, затем у канальцев. Отличие кровоснабжения юкстамедуллярного нефрона заключается в том, что эфферентная артериола не распадается на околоканальцевую капиллярную сеть, а образует прямые сосуды, спускающиеся в мозговое вещество почки. Эти сосуды обеспечивают кровоснабжение мозгового вещества почки; кровь из околоканальцевых капилляров и прямых сосудов оттекает в венозную систему и по почечной вене поступает в нижнюю полую вену.

      5. Физиологические методы исследования функции почек. Коэффициент очищения (клиренс).

      Измерение скорости клубочковой фильтрации. Для расчета объема жидкости, фильтруемой в 1 мин в почечных клубочках (скорость клубочковой фильтрации), и ряда других показателей процесса мочеобразования используют методы и формулы, основанные на принципе очищения (иногда их называют «клиренсовые методы», от английского слова clearance — очищение). Для измерения величины клубочковой фильтрации используют физиологически инертные вещества, не токсичные и не связывающиеся с белком в плазме крови, свободно проникающие через поры мембраны клубочкового фильтра из просвета капилляров вместе с безбелковой частью плазмы. Следовательно, концентрация этих веществ в клубочковой жидкости будет такой же, как в плазме крови. Это вещества не должны реабсорбироваться и секретироваться в почечных канальцах, тем самым с мочой будет выделяться все количество данного вещества, поступившего в просвет нефрона с ультрафильтратом в клубочках. К веществам, используемым для измерения скорости клубочковой фильтрации, относятся полимер фруктозы инулин, маннитол, полиэтиленгликоль-400, креатинин.

      Рассмотрим принцип очищения на примере измерения объема клубочковой фильтрации с помощью инулина. Количество профильтровавшегося в клубочках инулина (In) равно произведению объема фильтрата (СIn ) на концентрацию в нем инулина (она равна его концентрации в плазме крови, РIN). Выделившееся за то же время с мочой количество инулина равно произведению объема экскретированной мочи ( V ) на концентрацию в ней инулина (UIn ).

      Так как инулин не реабсорбируется и не секретируется, то количество профильтровавшегося инулина (ѕРIn ), равно количеству выделившегося ( V UIn ), откуда:

      Эта формула является основной для расчета скорости клубочковой фильтрации. При использовании других веществ для измерения скорости клубочковой фильтрации инулин в формуле заменяют на анализируемое вещество и рассчитывают скорость клубочковой фильтрации данного вещества. Скорость фильтрации жидкости вычисляют в мл/мин; для сопоставления величины клубочковой фильтрации у людей различных массы тела и роста ее относят к стандартной поверхности тела человека (1,73 м ). В норме у мужчин в обеих почках скорость клубочковой фильтрации на 1,73 м2 составляет около 125 мл/мин, у женщин — приблизительно 110 мл /мин.

      Измеренная с помощью инулина величина фильтрации в клубочках, называемая также коэффициентом очищения от инулина (или инулиновым клиренсом), показывает, какой объем плазмы крови освобожден от инулина за это время. Для измерения очищения от инулина необходимо непрерывно вливать в вену раствор инулина, чтобы в течение всего исследования поддерживать постоянной его концентрацию в крови. Очевидно, что это весьма сложно и в клинике не всегда осуществимо, поэтому чаще используют креатинин — естественный компонент плазмы, по очищению от которого можно было бы судить о скорости клубочковой фильтрации, хотя с его помощью скорость клубочковой фильтрации измеряется менее точно, чем при инфузии инулина. При некоторых физиологических и особенно патологических состояниях креатинин может реабсорбироваться и секретироваться, тем самым очищение от креатинина может не отражать истинной величины клубочковой фильтрации.

      У здорового человека вода попадает в просвет нефрона в результате фильтрации в клубочках, реабсорбируется в канальцах, и вследствие этого концентрация инулина растет. Концентрационный показатель инулина UIn / PIn указывает, во сколько раз уменьшается объем фильтрата при его прохождении по канальцам. Эта величина имеетважное значение для суждения об особенностях обработки любого вещества в канальцах, для ответа на вопрос о том, подвергается ли вещество реабсорбции или секретируется клетками канальцев. Если концентрационный показатель данного вещества X Ux / Px меньше, чем одновременно измеренная величина UInIn. то это указывает на реабсорбцию вещества X в канальцах, если Uх х больше, чем UIn / PIn , то это указывает на его секрецию. Отношение концентрационных показателей вещества X и инулина U х х : UIn / PIn носит название экскретируемой фракции (EF).

      Мысль о фильтрации воды и растворенных веществ как первом этапе мочеобразования была высказана в 1842 г. немецким физиологом К. Людвигом. В 20-х годах XX столетия американскому физиологу А. Ричардсу в прямом эксперименте удалось подтвердить это предположение — с помощью микроманипулятора пунктировать микропипеткой клубочковую капсулу и извлечь из нее жидкость, действительно оказавшуюся ультрафильтратом плазмы крови.

      Ультрафильтрация воды и низкомолекулярных компонентов из плазмы крови происходит через клубочковый фильтр. Этот фильтрационный барьер почти непроницаем для высокомолекулярных веществ. Процесс ультрафильтрации обусловлен разностью между гидростатическим давлением крови, гидростатическим давлением в капсуле клубочка и онкотическим давлением белков плазмы крови. Общая поверхность капилляров клубочка больше общей поверхности тела человека и достигает 1,5 м 2 на 100 г массы почки. Фильтрующая мембрана (фильтрационный барьер), через которую проходит жидкость из просвета капилляра в полость капсулы клубочка, состоит из трех слоев: эндотелиальных клеток капилляров, базальной мембраны и эпителиальных клеток висцерального (внутреннего) листка капсулы— подоцитов.

      Клетки эндотелия, кроме области ядра, очень истончены, толщина цитоплазмы боковых частей клетки менее 50 нм; в цитоплазме имеются круглые или овальные отверстия (поры) размером 50—100 нм, которые занимают до 30 % поверхности клетки. При нормальном кровотоке наиболее крупные белковые молекулы образуют барьерный слой на поверхности пор эндотелия и затрудняют движение через них альбуминов, ограничивая тем самым прохождение форменных элементов крови и белков через эндотелий. Другие компоненты плазмы крови и вода могут свободно достигать базальной мембраны.

      Базальная мембрана является одной из важнейших составных частей фильтрующей мембраны клубочка. У человека толщина базальной мембраны 250—400 нм. Эта мембрана состоит из трех слоев — центрального и двух периферических. Поры в базальной мембране препятствуют прохождению молекул диаметром больше 6 нм.

      Наконец, важную роль в определении размера фильтруемых веществ играют щелевые мембраны между «ножками» подоцитов. Эти эпителиальные клетки обращены в просвет капсулы почечного клубочка и имеют отростки — «ножки», которыми прикрепляются к базальной мембране. Базальная мембрана и щелевые мембраны между этими «ножками» ограничивают фильтрацию веществ, диаметр молекул которых больше 6,4 нм (т. е. не проходят вещества, радиус молекулы которых превышает 3,2 нм). Поэтому в просвет нефрона свободно проникает инулин (радиус молекулы 1,48 нм, молекулярная масса около 5200), может фильтроваться лишь 22 % яичного альбумина (радиус молекулы 2,85 нм, молекулярная масса 43500), 3 % гемоглобина (радиус молекулы 3,25 нм, молекулярная масса 68 000 и меньше 1 % сывороточного альбумина (радиус молекулы 3,55 нм, молекулярная масса 69 000).

      Прохождению белков через клубочковый фильтр препятствуют отрицательно заряженные молекулы — полианионы, входящие в состав вещества базальной мембраны, и сиалогликопротеиды в выстилке, лежащей на поверхности подоцитов и между их «ножками». Ограничение для фильтрации белков, имеющих отрицательный заряд, обусловлено размером пор клубочкового фильтра и их электронегативностью. Таким образом, состав клубочкового фильтрата зависит от свойств эпителиального барьера и базальной мембраны. Естественно, размер и свойства пор фильтрационного барьера вариабельны, поэтому в обычных условиях в ультрафильтрате обнаруживаются лишь следы белковых фракций, характерных для плазмы крови. Прохождение достаточно крупных молекул через поры зависит не только от их размера, но и конфигурации молекулы, ее пространственного соответствия форме поры.

      7. М еханизм образования первичной мочи. Эффективное фильтрационное давление. Влияние различных факторов на процессы фильтрации. Количество и свойства первичной мочи. Клубочковая фильтрация у детей.

      Фильтрация — это физический процесс. Главным фактором, который обусловливает фильтрацию, является разность гидростатического давления по обе стороны фильтра (фильтрационное давление). В почках оно равно:

      Р фильтрационное = Р в клубочке — (Р онкотическое + Р тканевое)

      30 мм 70 мм ( 20 мм 20 мм )

      Кроме фильтрационного давления, имеют значение величина молекулы (молекулярный вес), растворимость в жирах, электрический заряд. В состав клубочкового фильтра входит 20-40 капиллярных петель, окруженных внутренним листком боуменовой капсулы. Эндотелий капилляра имеет фенестры (дырки). Подоциты боуменовой капсулы имеют широкие щели между отросткам. Таким образом, проницаемость определяется структурой основной мембраны. Промежутки между коллагеновыми нитями этой мембраны равны 3-7,5 нм.

      Величина пор в фильтрующей поверхности капилляра и капсулы Боумена позволяет свободно проходить через почечный фильтр веществам с молекулярной массой не более 55 000 (инулин). Более крупные молекулы проникают с трудом (Нв с массой 64 500 фильтруется в 3%, альбумины крови (69 000) — в 1%). Однако, по данным некоторых ученых, альбумины практически все фильтруются в почках и обратно всасываются в канальцах. По-видимому, 80 000 — абсолютный предел проницаемости через поры капсулы и клубочка нормальной почки.

      Состав клубочкового фильтрата определяется размерами пор мембраны клубочка. В тоже время скорость фильтрации зависит от эффективного фильтрационного давления Рф. В связи с высокой гидравлической проводимостью капилляра в начале капилляра происходит быстрое образование фильтрата и столь же быстро нарастает осмотическое давление в нем. Когда оно становится равным гидростатическому минус тканевое, эффективное фильтрационное давление становится нулевым и фильтрация прекращается.

      Скоростью фильтрации называется объем фильтрации в единицу времени. У мужчин она составляет 125 мл/мин, у женщин — 110 мл /мин. В сутки фильтруется около 180 л. Значит, общий объем плазмы (3 л.) фильтруется в почках за 25 минут, и плазма очищается почками 60 раз в сутки. Вся внеклеточная жидкость (14 л) проходит через почечный фильтр 12 раз в сутки.

      Скорость клубочковой фильтрации (СКФ) поддерживается практически на постоянном уроне за счет миогенных реакций гладкой мускулатуры приносящих и выносящих сосудов, что обеспечивает постоянство эффективного фильтрационного давления. Поэтому фильтрационная функция (ФФ), или часть почечного плазматока, переходящая в фильтрат, также постоянна. У человека она равна 0,2 (ФФ = СКФ/ППТ). Ночью СКФ на 25% ниже. При эмоциональном возбуждении ППТ падает и ФФ растет за счет сужения выносящих сосудов. СКФ определяют по клиренсу инулина.

      8. Юкстагломеруллярный аппарат, его роль. Плотное пятно в дистальном отделе канальцев почек, его роль.

      состав юкстагломерулярного аппарата входит следующий компонент –специализированные эпителиоидные клетки. которые в основном окружают приносящую афферентную артериолу и эти клетки внутри содержат секреторные гранулы с ферментом ренином. Вторым компонентом аппарата является плотное пятно (maculadensa), которое лежит в начальной части дистальной части извитого канальца. Этот каналец подходит к почечному тельцу. Сюда же относят клетки интестиция между выносящей и приносящей артериоллы – клетки околососудистого полюса клубочка. Это экстраклубочковые мезангеальные клетки.

      Этот аппарат реагирует на изменение системного кровяного давления, местного клубочкового давления, на повышение концентрации хлористого натрия в дистальных канальцах. Это изменение воспринимается плотным пятном.

      Юкстагломерулярный аппарат реагирует на возбуждение симпатической нервной системы.

      При всех вышеперечисленных воздействиях начинается усиленное выделение ренина, который непосредственно поступает в кровь.

      Ренин – Ангиотензиноген (белок плазмы крови) – Ангиотензин 1 – Ангиотензин 2 (под действием Ангиотензин превращающий фермент, в основном в легких). Ангиотензин 2 – физиологически активное вещество, которое действует в трёх направлениях :

      1. Он влияет на надпочечники, которые стимулируют альдостерон

      2. На головной мозг(гипоталамус), где стимулирует выработку АДГ и стимулирует центр жажды

      3. Оказывает прямое влияние на кровеносных сосуды мышц – сужение

      При болезни почек повышается давление. Давление повышается и при анатомическом сужение почечной артерии. Это дает стойкую гипертонию. Влияние ангиотензина 2 на надпочечники, приводит к тому, что альдостерон вызывает задержку натрия в организме, т.к. он в эпителиях почечных канальцев усиливает работу натрие-калиевого насос. Он обеспечивает энергетическую функцию этого насоса. Альдостерон способствует реабсорбции натрия. Он будет способствовать выведению калия. Вместе с натрием идет вода. Задержка воды происходит, т.к. выделяется антидиуретический гормон. Если альдостерона у нас не будет, то начинается потеря натрия и задержка калия. На выведение натрия в почках влияет предсердный натрий – уретический пептид. Этот фактор способствует расширению сосудов, увеличиваются процессы фильтрации и происходит развитие диуреза и натрийуреза.

      Конечное действие – уменьшение объема плазмы, снижение периферического сосудистого сопротивление, понижение среднего артериального давления и минутного объема крови.

      На выведение натрия почками влияют простогландины и кинины. Простогландин E2 увеличивает выведение почками натрия и воды. Брадикинин как сосудорасширяющее вещество действует аналогично. Возбуждение симпатической системы повышает реабсорбцию натрия и снижает его выделение с мочой. Это эффект связан с сужением сосудов и уменьшением клубочковой фильтрации и с прямым влиянием на всасывание натрия в канальцах. Симпатическая система активирует ренин — ангиотензины – альдостерон.

      В почках вырабатывается несколько биологически активных веществ, позволяющих рассматривать ее как инкреторный орган. Гранулярные клетки юкстагломерулярного аппарата выделяют в кровь ренин при уменьшении артериального давления в почке, снижении содержания натрия в организме, при переходе человека из горизонтального положения в вертикальное. Уровень выброса ренина из клеток в кровь изменяется и в зависимости от концентрации Na + и С1 — в области плотного пятна дистального канальца, обеспечивая регуляцию электролитного и клубочково-канальцевого баланса. Ренин синтезируется в гранулярных клетках юкстагломерулярного аппарата и представляет собой протеолитический фермент. В плазме крови он отщепляет от ангиотензиногена, находящегося главным образом во фракции α2-глобулина, физиологически неактивный пептид, состоящий из 10 аминокислот, — ангиотензин I. В плазме крови под влиянием ангиотензинпревращающего фермента от ангиотензина I отщепляются 2 аминокислоты, и он превращается в активное сосудосуживающее вещество ангиотензин II . Он повышает артериальное давление благодаря сужению артериальных сосудов, усиливает секрецию альдостерона, увеличивает чувство жажды, регулирует реабсорбцию натрия в дистальных отделах канальцев и собирательных трубках. Все перечисленные эффекты способствуют нормализации объема крови и артериального давления.

      В почке синтезируется активатор плазминогена — урокиназа. В мозговом веществе почки образуются простагландины. Они участвуют, в частности, в регуляции почечного и общего кровотока, увеличивают выделение натрия с мочой, уменьшают чувствительность клеток канальцев к АДГ. Клетки почки извлекают из плазмы крови образующийся в печени прогормон — витамин D3 и превращают его в физиологически активный гормон — активные формы витамина D3. Этот стероид стимулирует образование кальцийсвязывающего белка в кишечнике, способствует освобождению кальция из костей, регулирует его реабсорбцию в почечных канальцах. Почка является местом продукции эритропоэтина, стимулирующего эритропоэз в костном мозге. В почке вырабатывается брадикинин, являющийся сильным вазодилататором.

      9. Физи о л огическая роль канальцев (тубулярного аппарата) нефрона. Реабсорбция в проксимальном отделе канальцев (активный и пассивный транспорт). Реабсорбция глюкозы. Канальцевая реабсорбция у детей.

      Начальный этап мочеобразования, приводящий к фильтрации всех низкомолекулярных компонентов плазмы крови, неизбежно должен сочетаться с существованием в почке систем, реабсорбирующих все ценные для организма вещества. В обычных условиях в почке человека за сутки образуется до 180 л фильтрата, а выделяется 1,0—1,5 л мочи, остальная жидкость всасывается в канальцах. Роль клеток различных сегментов нефрона в реабсорбции неодинакова. Проведенные на животных опыты с извлечением микропипеткой жидкости из различных участков нефрона позволили выяснить особенности реабсорбции различных веществ в разных частях почечных канальцев (рис. 12.6). В проксимальном сегменте нефрона практически полностью реабсорбируются аминокислоты, глюкоза, витамины, белки, микроэлементы, значительное количество ионов Na +. СI — ,НСОз. В последующих от делах нефрона всасываются преимущественно электролиты и вода.

      Реабсорбция натрия и хлора представляет собой наиболее значительный по объему и энергетическим тратам процесс. В проксимальном канальце в результате реабсорбции большинства профильтровавшихся веществ и воды объем первичной мочи уменьшается, и в начальный отдел петли нефрона поступает около ‘/з профильтровавшейся в клубочках жидкости. Из всего количества натрия, поступившего в нефрон при фильтрации, в петле нефрона всасывается до 25 %, в дистальном извитом канальце — около 9 %, и менее 1% реабсорбируется в собирательных трубках или экскретируется с мочой.

      Реабсорбция в дистальном сегменте характеризуется тем, что клетки переносят меньшее, чем в проксимальном канальце, количество ионов, но против большего градиента концентрации. Этот сегмент нефрона и собирательные трубки играют важнейшую роль в регуляции объема выделяемой мочи и концентрации в ней осмотически активных веществ (осмотическая концентрация 1 ). Б конечной моче концентрация натрия может снижаться до 1 ммоль/л по сравнению со 140 ммоль/л в плазме крови. В дистальном канальце калий не только реабсорбируется, но и секретируется при его избытке в организме.

      В проксимальном отделе нефрона реабсорбция натрия, калия, хлора и других веществ происходит через высокопроницаемую для воды мембрану стенки канальца. Напротив, в толстом восходящем отделе петли нефрона, дистальных извитых канальцах и собирательных трубках реабсорбция ионов и воды происходит через малопроницаемую для воды стенку канальца; проницаемость мембраны для воды в отдельных участках нефрона и собирательных трубках может регулироваться, а .величина проницаемости изменяется в зависимости от функционального состояния организма (факультативная реабсорбция). Под влиянием импульсов, поступающих по эфферентным нервам, и при действии биологически активных веществ реабсорбция натрия и хлора регулируется в проксимальном отделе нефрона. Это особенно отчетливо проявляется в случае увеличения объема крови и внеклеточной жидкости, когда уменьшение реабсорбции в проксимальном канальце способствует усилению экскреции ионов и воды и тем самым — восстановлению водно-солевого равновесия. В проксимальном канальце всегда сохраняется изоосмия. Стенка канальца проницаема для воды, и объем реабсорбируемой воды определяется количеством реабсорбируемых осмотически активных веществ, за которыми вода движется по осмотическому градиенту. В конечных частях дистального сегмента нефрона и собирательных трубках проницаемость стенки канальца для воды регулируется вазопрессином.

      Для характеристики всасывания различных веществ в почечных канальцах существенное значение имеет представление о пороге выведения. Непороговые вещества выделяются при любой их концентрации в плазме крови (и соответственно в ультрафильтрате). Такими веществами являются инулин, маннитол. Порог выведения практически всех физиологически важных, ценных для организма веществ различен. Так, выделение глюкозы с мочой (глюкозурия) наступает тогда, когда ее концентрация в клубочковом фильтрате (и в плазме крови) превышает 10 ммоль/л. Физиологический смысл этого явления будет раскрыт при описании механизма реабсорбции.

      Фильтруемая глюкоза практически полностью реабсорбируется клетками проксимального канальца, и в норме за сутки с мочой выделяется незначительное ее количество (не более 130 мг). Процесс обратного всасывания глюкозы осуществляется против высокого концентрационного градиента и является вторично-активным. В апикальной (люминальной) мембране клетки глюкоза соединяется с переносчиком, который должен присоединить также Na +. после чего комплекс транспортируется через апикальную мембрану, т. е. в цитоплазму поступают глюкоза и Na +. Апикальная мембрана отличается высокой селективностью и односторонней проницаемостью и не пропускает ни глюкозу, ни Na + обратно из клетки в просвет канальца. Эти вещества движутся к основанию клетки по градиенту концентрации. Перенос глюкозы из клетки в кровь через базальную плазматическую мембрану носит характер облегченной диффузии, a Na +. как уже отмечалось выше, удаляется натриевым насосом, находящимся в этой мембране.

      10. Реабсорбция в тонком сегменте петли Генле (концентрирование мочи). Понятие о противоточно-поворотной системе.

      Поступающая из проксимального канальца, в тонкий нисходящий отдел петли нефрона жидкость попадает в зону почки, в интерстициальной ткани которой концентрация осмотически активных веществ выше, чем в корковом веществе почки. Это повышение осмоляльнои концентрации в наружной зоне мозгового вещества обусловлено деятельностью толстого восходящего отдела петли нефрона. Его стенка непроницаема для воды, а клетки транспортируют Cl -. Na + в интерстициальную ткань. Стенка нисходящего отдела петли проницаема для воды. Вода всасывается из просвета канальца в окружающую интерстициальной ткань по осмотическому градиенту, а осмотически активные вещества остаются в просвете канальца. Концентрация осмотически активных веществ в жидкости, поступающей из восходящего отдела петли в начальные отделы дистантного извитого канальца, составляет уже около 200 мосмоль/кг Н2 О, т. е. она ниже, чем в ультрафильтрате. Поступление С1 — и Na + в интерстициальную ткань мозгового вещества увеличивает концентрацию осмотически активных веществ (осмоляльную концентрацию) межклеточной жидкости в этой зоне почки. На такую же величину растет и осмоляльная концентрация жидкости, находящейся в просвете нисходящего отдела петли. Это обусловлено тем, что через водопроницаемую стенку нисходящего отдела петли нефрона в интерстициальную ткань по осмотическому градиенту переходит вода, в то же время осмотически активные вещества остаются в просвете этого канальца.

      Чем дальше от коркового вещества подлиннику почечного сосочка находится жидкость в нисходящем колене петли, тем выше ее осмоляльная концентрация. Таким образом, в каждых соседних участках нисходящего отдела петли имеется лишь небольшое нарастание осмотического давления, но вдоль мозгового вещества почки осмоляльная концентрация жидкости в просвете канальца и в интерстициальной ткани постепенно растет от 300 до 1450 мосмоль/кг НгО.

      На вершине мозгового вещества почки осмоляльная концентрация жидкости в петле нефрона возрастает в несколько раз, а ее объем уменьшается. При дальнейшем движении жидкости по восходящему отделу петли нефрона, особенно в толстом восходящем отделе петли, продолжается реабсорбция С1 — и Na +. вода же остается в просвете канальца.

      В начале 50-х годов XX века была обоснована гипотеза, согласно которой образование осмотически концентрированной мочи обусловлено деятельностью повороти о-противоточной множительной системы в почке.

      Принцип противоточного обмена достаточно широко распространен в природе и используется в технике. Механизм работы такой системы рассмотрим на примере кровеносных сосудов в конечностях арктических животных. Во избежание больших потерь тепла кровь в параллельно расположенных артериях и венах конечностей течет таким образом, что теплая артериальная кровь согревает охлажденную венозную кровь, движущуюся к сердцу (рис. 12.8, А). В стопу притекает артериальная кровь низкой температуры, что резко уменьшает теплоотдачу. Здесь такая система функционирует только как противоточный обменник; в почке же она обладает множительным эффектом, т. е. увеличением эффекта,

      достигаемого в каждом из отдельных сегментов системы. Для лучшего понимания ее работы рассмотрим систему, состоящую из трех параллельно расположенных трубок (рис. 12.8, Б). Трубки I и II дугообразно соединены на одном из концов. Стенка, общая для обеих трубок, обладает способностью переносить ионы, но не пропускать воду. Когда в такую систему через вход I наливают раствор концентрации 300 мосмоль/л (рис. 12.8, Б, а) и он не течет, то через некоторое время в результате транспорта ионов в трубке I раствор станет гипотоническим, а в трубке II — гипертоническим. В том случае, когда жидкость течет по трубкам непрерывно, начинается концентрирование осмотически активных веществ (рис. 12.8, Б, б). Перепад их концентраций на каждом уровне трубки вследствие одиночного эффекта транспорта ионов не превышает 200 ммоль/л, однако по длине трубки происходит умножение одиночных эффектов, и система начинает работать как противоточная множительная. Так как по ходу движения жидкости из нее извлекаются не только ионы, но и некоторое количество воды, концентрация раствора все более повышается по мере приближения к изгибу петли. В отличие от трубок I и II в трубке III регулируется проницаемость стенок для воды: когда стенка становится водопроницаемой — начинает пропускать воду, объем жидкости в ней уменьшается. При этом вода идет в сторону большей осмотической концентрации в жидкость возле трубки, а соли остаются внутри трубки. В результате этого растет концентрация ионов в трубке III и уменьшается объем содержащейся в ней жидкости. Концентрация в ней веществ будет зависеть от ряда условий, в том числе от работы противоточной множительной системы трубок I и II. Как будет ясно из последующего изложения, работа почечных канальцев в процессе осмотического концентрирования мочи похожа на описанную модель.

      В зависимости от состояния водного баланса организма почки выделяют гипотоническую (осмотическое разведение) или, напротив, осмотически концентрированную (осмотическое концентрирование) мочу. В процессе осмотического концентрирования мочи в почке принимают участие все отделы канальцев, сосуды мозгового вещества, интерстициальная ткань, которые функционируют как поворотно-противоточная множительная система. Из 100 мл фильтрата, образовавшегося в клубочках, около 60— 70 мл ( 2 /3 ) реабсорбируется к концу проксимального сегмента. Концентрация осмотически активных веществ в оставшейся в канальцах жидкости такая же, как и в ультрафильтрате плазмы крови, хотя состав жидкости отличается от состава ультрафильтрата вследствие реабсорбции ряда веществ вместе с водой в проксимальном канальце (рис. 12.9). Далее канальцевая жидкость переходит из коркового вещества почки в мозговое, перемещаясь по петле нефрона до вершины мозгового вещества (где каналец изгибается на 180°), переходит в восходящий отдел петли и движется в направлении от мозгового к корковому веществу почки.

      11. Реабсорбция в дистальном отделе канальцев почек (факультативная). Гормональный механизм регуляции реабсорбции натрия (ренин — ангиотензин — альдостерон).

      В начальные отделы дистального извитого канальца всегда — и при водном диурезе, и при антидиурезе — поступает гипотоническая жидкость, концентрация осмотически активных веществ в которой менее 200 мосмоль/кг Н2 О.

      При уменьшении мочеотделения (антидиурезе), вызванном инъекцией АДГ или секрецией АДГ нейрогипофизом при дефиците воды в организме, увеличивается проницаемость стенки конечных частей дистального сегмента (связующий каналец) и собирательных трубок для воды. Из гипотонической жидкости, находящейся в связующем канальце и собирательной трубке коркового вещества почки, вода реабсорбируется по осмотическому градиенту, осмоляльная концентрация жидкости в этом отделе увеличивается до 300 мосмоль/кг Н2 О, т. е. становится изоосмотичной крови в системном кровотоке и межклеточной жидкости коркового вещества почки. Концентрирование мочи продолжается в собирательных трубках; они проходят параллельно канальцам петли нефрона через мозговое вещество почки. Как отмечалось выше, в мозговом веществе почки постепенно возрастает осмоляльная концентрация жидкости и из мочи, находящейся в собирательных трубках, реабсорбируется вода; концентрация осмотически активных веществ в жидкости просвета канальца выравнивается с таковой в интерстициальной жидкости на вершине мозгового вещества. В условиях дефицита воды в организме усиливается секреция АДГ, что увеличивает проницаемость стенок конечных частей дистального сегмента и собирательных трубок для воды.

      В отличие от наружной зоны мозгового вещества почки, где повышение осмолярной концентрации основано главным образом на транспорте Na + и С1 -. во внутреннем мозговом веществе почки это повышение обусловлено участием ряда веществ, среди которых важнейшее значение имеет мочевина — для нее стенки проксимального канальца проницаемы. В проксимальном канальце реабсорбируется до 50 % профильтровавшейся мочевины, однако, в начале дистального канальца количество мочевины несколько больше, чем количество мочевины, поступившей с фильтратом. Оказалось, что имеется система внутрипочечного кругооборота мочевины, которая участвует в осмотическом концентрировании мочи. При антидиурезе АДГ увеличивает проницаемость собирательных трубок мозгового вещества почки не только для воды, но и для мочевины. В просвете собирательных трубок вследствие реабсорбции воды повышается концентрация мочевины. Когда проницаемость канальцевой стенки для мочевины увеличивается, она диффундирует в мозговое вещество почки. Мочевина проникает в просвет прямого сосуда и тонкого отдела петли нефрона. Поднимаясь по направлению к корковому веществу почки по прямому сосуду, мочевина непрерывно участвует в противоточном обмене, диффундирует в нисходящий отдел прямого сосуда и нисходящую часть петли нефрона. Постоянное поступление во внутреннее мозговое вещество мочевины, С1 — и Na +. реабсорбируемых клетками тонкого восходящего отдела петли нефрона и собирательных трубок, удержание этих веществ благодаря деятельности противоточной системы прямых сосудов и петель нефрона обеспечивают повышение концентрации осмотически активных веществ во внеклеточной жидкости во внутреннем мозговом веществе почки. Вслед за увеличением осмоляльной концентрации окружающей собирательную трубку интерстициальной жидкости возрастает реабсорбция воды из нее и повышается эффективность осморегулирующей функции почки. Эти данные об изменении проницаемости канальцевой стенки для мочевины позволяют понять, почему очищение от мочевины уменьшается при снижении мочеотделения.

      Прямые сосуды мозгового вещества почки, подобно канальцам петли нефрона, образуют противоточную систему. Благодаря такому расположению прямых сосудов обеспечивается эффективное кровоснабжение мозгового вещества почки, но не происходит вымывания из крови осмотически активных веществ, поскольку при прохождении крови по прямым сосудам наблюдаются такие же изменения ее осмотической концентрации, как и в тонком нисходящем отделе петли нефрона. При движении крови по направлению к вершине мозгового вещества концентрация осмотически активных веществ в ней постепенно возрастает, а во время обратного движения крови к корковому веществу соли и другие вещества, диффундирующие через сосудистую стенку, переходят в интерстициальную ткань. Тем самым сохраняется градиент концентрации осмотически активных веществ внутри почки и прямые сосуды функционируют как противоточная система. Скорость движения крови по прямым сосудам определяет количество удаляемых из мозгового вещества солей и мочевины и отток реабсорбируемой воды.

      В случае водного диуреза функции почек отличаются от описанной ранее картины. Проксимальная реабсорбция не изменяется, в дистальный сегмент нефрона поступает такое же количество жидкости, как и при антидиурезе. Осмоляльность мозгового вещества почки при водном диурезе в три раза меньше, чем на максимуме антидиуреза, а осмотическая концентрация жидкости, поступающей в дистальный сегмент нефрона, такая же — приблизительно 200 мосмоль/кг Н2 О. При водном диурезе стенка конечных отделов почечных канальцев остается водопроницаемой, а из протекающей мочи клетки продолжают реабсорбировать Na +. В итоге выделяется гипотоническая моча, концентрация осмотически активных веществ в которой может снижаться до 50 мосмоль/кг Н2 О. Проницаемость канальцев для мочевины низкая, поэтому мочевина экскретируется с мочой, не накапливаясь в мозговом веществе почки.

      Таким образом, деятельность петли нефрона, конечных частей дистального сегмента и собирательных трубок обеспечивает способность почек вырабатывать большие объемы разведенной (гипотонической) мочи — до 900 мл/ч, а при дефиците воды экскретировать всего 10—12 мл/ч мочи, в 4,5 раза более осмотически концентрированной, чем кровь. Способность почки осмотически концентрировать мочу исключительно развита у некоторых пустынных грызунов, что позволяет им длительное время обходиться без воды.

      12. Факультативная реабсорбция воды в собирательных трубочках. Гормональный механизм регуляции реабсорбции воды (вазопрессин). Аквапорины, их роль.

      Факультативная реабсорбция воды зависит от осмотической проницаемости канальцевой стенки, величины осмотического градиента и скорости движения жидкости по канальцу.

      Для характеристики всасывания различных веществ в почечных канальцах существенное значение имеет представление о пороге выведения.

      Одной из особенностей работы почек является их способность к изменению в широком диапазоне интенсивности транспорта различных веществ: воды, электролитов и неэлектролитов. Это является непременным условием выполнения почкой ее основного назначения — стабилизации основных физических и химических показателей жидкостей внутренней среды. Широкий диапазон изменения скорости реабсорбции каждого из профильтровавшихся в просвет канальца веществ, необходимых для организма, требует существования соответствующих механизмов регуляции функций клеток. Действие гормонов и медиаторов, влияющих на транспорт ионов и воды, определяется изменением функций ионных или водных каналов, переносчиков, ионных насосов. Известно несколько вариантов биохимических механизмов, с помощью которых гормоны и медиаторы регулируют транспорт веществ клеткой нефрона. В одном случае происходит активирование генома и усиливается синтез специфических белков, ответственных за реализацию гормонального эффекта, в другом случае изменение проницаемости и работы насосов происходит без непосредственного участия генома.

      Сравнение особенностей действия альдостерона и вазопрессина позволяет раскрыть сущность обоих вариантов регуляторных влияний. Альдостерон увеличивает реабсорбцию Na + в

      клетках почечных канальцев. Из внеклеточной жидкости альдостерон проникает через базальную плазматическую мембрану в цитоплазму клетки, соединяется с рецептором, и образовавшийся комплекс поступает в ядро (рис. 12.11). В ядре стимулируется ДНК-зависимый синтез тРНК и активируется образование белков, необходимых для увеличения транспорта Na+. Альдостерон стимулирует синтез компонентов натриевого насоса (Na +. К + -АТФазы), ферментов цикла трикарбоновых кислот (Кребса) и натриевых каналов, по которым Na+ входит в клетку через апикальную мембрану из просвета канальца. В обычных, физиологических, условиях одним из факторов, ограничивающих реабсорбцию Na +. является проницаемость для Na+ апикальной плазматической мембраны. Возрастание числа натриевых каналов или времени их открытого состояния увеличивает вход Na в клетку, повышает содержание Na + в ее цитоплазме и стимулирует активный перенос Na + и клеточное дыхание.

      Увеличение секреции К + под влиянием альдостерона обусловлено возрастанием калиевой проницаемости апикальной мембраны и поступления К из клетки в просвет канальца. Усиление синтеза Na +. К + -АТФазы при действии альдостерона обеспечивает усиленное поступление К + в клетку из внеклеточной жидкости и благоприятствует секреции К + .

      Другой вариант механизма клеточного действия гормонов рассмотрим на примере АДГ (вазопрессин). Он взаимодействует со стороны внеклеточной жидкости с V2 -рецептором, локализованным в базальной плазматической мембране клеток конечных частей дистального сегмента и собирательных трубок. При участии G-белков происходит активация фермента аденилатциклазы и из АТФ образуется 3′,5′-АМФ (цАМФ), который стимулирует протеинкиназу А и встраивание водных каналов (аквапоринов) в апикальную мембрану. Это приводит к увеличению проницаемости для воды. В дальнейшем цАМФ разрушается фосфодиэстеразой и превращается в 3’5′-АМФ.

      13. Осморегулирующие рефлексы. Осморецепторы, их локализация, механизм действия, значение.

      Почка служит исполнительным органом в цепи различных рефлексов, обеспечивающих постоянство состава и объема жидкостей внутренней среды. В ЦНС поступает информация о состоянии внутренней среды, происходит интеграция сигналов и обеспечивается регуляция деятельности почек при участии эфферентных нервов или эндокринных желез, гормоны которых регулируют процесс мочеобразования. Работа почки, как и других органов, подчинена не только безусловно-рефлекторному контролю, но и регулируется корой большого мозга, т. е. мочеобразование может меняться условно-рефлекторным путем. Анурия, наступающая при болевом раздражении, может быть воспроизведена условно-рефлекторным путем. Механизм болевой анурии основан на раздражении гипоталамических центров, стимулирующих секрецию вазопрессина нейрогипофизом. Наряду с этим усиливаются активность симпатической части автономной нервной системы и секреция катехоламинов надпочечниками, что и вызывает резкое уменьшение мочеотделения вследствие как снижения клубочковой фильтрации, так и увеличения канальцевой реабсорбции воды.

      Не только уменьшение, но и увеличение диуреза может быть вызвано условно-рефлекторным путем. Многократное введение воды в организм собаки в сочетании с действием условного раздражителя приводит к образованию условного рефлекса, сопровождающегося увеличением мочеотделения. Механизм условно-рефлекторной полиурии в данном случае основан на том, что от коры больших полушарий поступают импульсы в гипоталамус и уменьшается секреция АДГ. Импульсы, поступающие по эфферентным нервам почки, регулируют гемодинамику и работу юкстагломерулярного аппарата почки, оказывают прямое влияние на реабсорбцию и секрецию ряда неэлектролитов и электролитов в канальцах. Импульсы, поступающие по адренергическим волокнам, стимулируют транспорт натрия, а по холинергическим — активируют реабсорбцию глюкозы и секрецию органических кислот. Механизм изменения мочеобразования при участии адренергических нервов обусловлен активацией аденилатциклазы и образованием цАМФ в клетках канальцев. Катехоламинчувствительная аденилатциклаза имеется в базолатеральных мембранах клеток дистального извитого канальца и начальных отделов собирательных трубок. Афферентные нервы почки играют существенную роль как информационное звено системы ионной регуляции, обеспечивают осуществление рено-ренальных рефлексов.

      14. Секреторные процессы в почках.

      Почки участвуют в образовании (синтезе) некоторых веществ, которые они же впоследствии и выводят. Почки осуществляют секреторную функцию. Они обладают способностью к секреции органических кислот и оснований, ионов К+ и Н+. Установлено участие почек не только в минеральном, но и в липидном, белковом и углеводном обмене.

      Таким образом, почки, регулируя величину осмотического давления в организме, постоянство реакции крови, осуществляя синтетическую, секреторную и экскреторную функции, принимают активное участие в поддержании постоянства состава внутренней среды организма (гомеостаза).

      В просвете канальцев содержится бикарбонат натрия. В клетках почечных канальцев находится фермент карбоангидраза, под влиянием которой из углекислого газа и воды образуется угольная кислота.

      Угольная кислота диссоциирует на ион водорода и анион НСО3-. Ион Н+ секретируется из клетки в просвет канальца и вытесняет натрий из бикарбоната, превращая его в угольную кислоту, а затем в Н2О и СО2. Внутри клетки НСО3- взаимодействует с реабсорбированным из фильтрата Na+. CO2 легко диффундирующий через мембраны по градиенту концентрации, поступает в клетку и вместе с СО2 образующимся в результате метаболизма клетки, вступает в реакцию образования угольной кислоты.

      Секретируемые ионы водорода в просвете канальца связываются также с двузамещенным фосфатом (Na2HPO4), вытесняя из него натрий и превращая в одно замещенный — NaH2PO4.

      В результате дезаминирования аминокислот в почках происходит образование аммиака и выход его в просвет канальца. Ионы водорода связываются в просвете канальца с аммиаком и образуют ион аммония NH4+. Таким образом происходит детоксикация аммиака.

      Секреция иона Н+ в обмен на ион Nа+ приводит к восстановлению резерва оснований в плазме крови и выделению избытка ионов водорода.

      При интенсивной мышечной работе, питании мясом моча становится кислой, при потреблении растительной пищи — щелочной.

      15. Значение почек в поддержании кислотно-щелочного равновесия в организме, особенности в детском возрасте.

      Почки участвуют в поддержании постоянства концентрации Н + в крови, экскретируя кислые продукты обмена. Активная реакция мочи у человека и животных может очень резко меняться в зависимости от состояния кислотно-основного состояния организма. Концентрация Н + при ацидозе и алкалозе различается почти в 1000 раз, при ацидозе рН может снижаться до 4,5, при алкалозе — достигать 8,0. Это способствует участию почек в стабилизации рН плазмы крови на уровне 7,36. Механизм подкисления мочи основан на секреции клетками канальцев Н + (рис. 12.10). В апикальной плазматической мембране и цитоплазме клеток различных отделов нефрона находится фермент карбоангидраза (КА), катализирующий реакцию гидратации СО2. СО2 + Н2 О ↔ Н2 СО3 ↔ Н + + НСО3.

      Секреция Н + создает условия для реабсорбции вместе с гидрокарбонатом равного количества Na +. Наряду с натрий-калиевым насосом и электрогенным натриевым насосом, обусловливающим перенос Na + с С1 — реабсорбция Na + с гидрокарбонатом играет важную роль в поддержании натриевого баланса. Фильтрующийся из плазмы крови гидрокарбонат соединяется с секретированным клеткой Н + и в просвете канальца превращается в СО2. Образование Н + происходит следующим образом. Внутри клетки вследствие гидратации СО2 образуется Н2 СО3 и диссоциирует на Н + и НСО3 -. В просвете канальца Н + связываются не только с HCO3 -. но и с такими соединениями, как двузамещенный фосфат (Na2 HPO4), и некоторыми другими, в результате чего увеличивается экскреция титруемых кислот (ТА — ) с мочой. Это способствует выделению кислот и восстановлению резерва оснований в плазме крови. Наконец, секретируемый Н + может связываться в просвете канальца с NHз,образующимся в клетке при дезаминировании глутамина и ряда аминокислот и диффундирующим через мембрану в просвет канальца, в котором образуется ион аммония: NH3 + Н + → NH4 + Этот процесс способствует сбережению в организме Na + и К +. которые реабсорбируются в канальцах. Таким образом, общая экскреция кислот почкой (UH + •V) складывается из трех компонентов — титруемых кислот (Uta •V), аммония (UNH 4 •V) и гидрокарбоната:

      При питании мясом образуется большее количество кислот и моча становится кислой, а при потреблении растительной пищи рН сдвигается в щелочную сторону. При интенсивной физической работе из мышц в кровь поступает значительное количество молочной и фосфорной кислот и почки увеличивают выделение «кислых» продуктов с мочой.

      Кислотовыделительная функция почек во многом зависит от кислотно-основного состояния организма. Так, при гиповентиляции легких происходит задержка СО2 и снижается рН крови — развивается дыхательный ацидоз, при гипервентиляции уменьшается напряжение СО2 в крови, растет рН крови — возникает состояние дыхательного алкалоза. Содержание ацетоуксусной и β-оксимасляной кислот может нарастать при не леченом сахарном диабете. В этом случае резко снижается концентрация гидрокарбоната в крови, развивается состояние метаболического ацидоза. Рвота, сопровождающаяся потерей соляной кислоты, приводит к увеличению в крови концентрации гидрокарбоната и метаболическому алкалозу. При нарушении баланса Н + вследствие первичных изменений напряжения СО2 развивается дыхательный алкалоз или ацидоз, при изменении концентрации НСО3 — наступает метаболический алкалоз или ацидоз. Наряду с почками в нормализации кислотно-основного состояния участвуют и легкие. При дыхательном ацидозе увеличиваются экскреция Н + и реабсорбция НСО3 -. при дыхательном алкалозе уменьшаются выделение Н + и реабсорбция HCΟ3 — .

      Метаболический ацидоз компенсируется гипервентиляцией легких. В конечном счете почки стабилизируют концентрацию гидрокарбоната в плазме крови на уровне 26—28 ммоль/л, а рН — на уровне 7,36.

      16. Моча, ее состав, количество. Регуляция выведения мочи. Мочевыведение у детей.

      Диурезом называют количество мочи, выделяемое человеком за определенное время. Эта величина у здорового человека колеблется в широких пределах в зависимости от состояния водного обмена. При обычном водном режиме за сутки выделяется 1—1,5 л мочи. Концентрация осмотически активных веществ в моче зависит от состояния водного обмена и составляет 50— 1450 мосмоль/кг Н2 О. После потребления значительного количества воды и при функциональной пробе с водной нагрузкой (испытуемый выпивает воду в объеме 20 мл на 1 кг массы тела) скорость мочеотделения достигает 15—20 мл/мин. В условиях высокой температуры окружающей среды вследствие возрастания потоотделения количество выделяемой мочи уменьшается. Ночью во время сна диурез меньше, чем днем.

      Состав и свойства мочи. С мочой могут выделяться большинство веществ, имеющихся в плазме крови, а также некоторые соединения, синтезируемые в почке. С мочой выделяются электролиты, количество которых зависит от потребления с пищей, а концентрация в моче — от уровня мочеотделения. Суточная экскреция натрия составляет 170—260 ммоль, калия — 50—80, хлора — 170—260, кальция — 5, магния — 4, сульфата — 25 ммоль.

      Почки служат главным органом экскреции конечных продуктов азотистого обмена. У человека при распаде белков образуется мочевина, составляющая до 90 % азота мочи; ее суточная экскреция достигает 25—35 г. С мочой выделяется 0,4—1,2 г азота аммиака, 0,7 г мочевой кислоты (при потреблении пищи, богатой пуринами, выделение возрастает до 2—3 г). Креатин, образующийся в мышцах из фосфокреатина, переходит в креагинин; его выделяется около 1,5 г в сутки. В небольшом количестве в мочу поступают некоторые производные продуктов гниения белков в кишечнике — индол, скатол, фенол, которые в основном обезвреживаются в печени, где образуются парные соединения с серной кислотой — индоксилсерная, скатоксилсерная и другие кислоты. Белки в нормальной моче выявляются в очень небольшом количестве (суточная экскреция не превышает 125 мг). Небольшая протеинурия наблюдается у здоровых людей после тяжелой физической нагрузки и исчезает после отдыха.

      Глюкоза в моче в обычных условиях не выявляется. При избыточном потреблении сахара, когда концентрация глюкозы в плазме крови превышает 10 ммоль/л, при гипергликемии иного происхождения наблюдается глюкозурия — выделение глюкозы с мочой.

      Цвет мочи зависит от величины диуреза и уровня экскреции пигментов. Цвет меняется от светло-желтого до оранжевого. Пигменты образуются из билирубина желчи в кишечнике, где билирубин превращается в уробилин и урохром, которые частично всасываются в кишечнике и затем выделяются почками. Часть пигментов мочи представляет собой окисленные в почке продукты распада гемоглобина.

      С мочой выделяются различные биологически активные вещества и продукты их превращения, по которым в известной степени можно судить о функции некоторых желез внутренней секреции. В моче обнаружены производные гормонов коркового вещества надпочечников, эстрогены, АДГ, витамины (аскорбиновая кислота, тиамин), ферменты (амилаза, липаза, трансаминаза и др.). При патологии в моче обнаруживаются вещества, обычно в ней не выявляемые, — ацетон, желчные кислоты, гемоглобин и др.

      Источник: http://dendrit.ru/page/show/mnemonick/organy-vydeleniya

      Фотографии симптомов молочницы и описание проявлений болезни

      Кандидоз – это распространенное заболевание, которое поражает слизистые оболочки, кожу и даже внутренние органы. Возникает эта проблема в результате обильного размножения грибков рода Кандида, которое способно перерасти в стоматит в полости рта или локализоваться на языке, сосках и половых органах.

      Кандидоз — это дрожжеподобная грибковая инфекция, приносящая много неприятностей женщинам

      Данный вид грибка присутствует практически в каждом уголке любого дома, на улице, на плодах растений и даже на коже человека. Фото проявлений кандидоза всегда разные, в зависимости от того, где он проявился.

      У кого можно обнаружить грибок Кандида?

      Часто кандидоз может возникать у ребенка в виде стоматита.

      Для любого здорового организма иметь незначительную часть этой микрофлоры вполне естественно. Для беременных женщин и девушек условно патогенная микрофлора является нормальной, однако способна провоцировать молочницу при любых изменениях в организме. Но очень часто, когда человек начинает терять здоровье, а иммунитет стремительно падает, эти дрожжеподобные грибки начинают активно размножаться.

      Одним из мест локализации грибка могут быть складки кожи

      Грибки, представленные на фото, «питаются» глюкозой, а для существования им подходит температура человеческого тела. Кандидоз может возникнуть на любом участке кожи, но чаще он проявляется в полости рта и вокруг него, на языке. Спровоцировать данный недуг могут резкие изменения в организме, в частности, сахарный диабет, хронические болезни. Также причиной появления кандидоза становится сниженный иммунитет, прием агрессивных препаратов, беременность, гормональные изменения. Он может появиться у женщин, которые ждут ребенка, у детей и у мужчин.

      Особенности возникновения

      Когда иммунитет ослаблен и в организме есть некоторые проблемы, грибки Кандида начинают размножаться и проникать сквозь кожные покровы. Человек, ничего не подозревая, может иметь целые колонии этих микроорганизмов. Они живут в подходящей им среде и питаются веществами, разрушая при этом клетки кожи и проникая все глубже. Конечно, лейкоциты активно препятствуют этому процессу, но такое противоборство может длиться годами то в пользу кандидоза, то в пользу иммунитета. Таким образом, болезнь будет либо распространяться и разрастаться, либо угасать. Без лечения процесс распространения будет проходить намного быстрей.

      Колонии дрожжеподобного грибка, как правило, локализуются на слизистых оболочках, в т.ч. полости рта

      Грибки могут поразить другие участки кожи, локализоваться на гениталиях и слизистой оболочке.

      В медицине половой кандидоз еще называют молочницей, потому что возникают белые творожистые выделения из половых органов с едким и неприятным запахом. Такая болезнь может передаваться половым путем и инфицировать как представителей сильного пола, так и женщин, особенно беременных. Половые органы и слизистая представляют самые благоприятные условия для размножения грибков Кандида.

      Особенности распространения

      Существует несколько вариантов путей передачи кандидоза от одного человека к другому:

      • Чаще всего грибок передается половым путем.
      • Вагинальный кандидоз является наиболее распространенным проявлением и имеет отдельное название – «молочница». У женщин эта болезнь начинается с белых выделений. Мужчины, инфицированные грибком, могут заболеть, но у них развивается другая форма болезни – баланит. Он поражает слизистую полового члена и сопровождается очаговыми поражениями.

      • Также данный грибок может быть в полости рта у ребенка.
      • Такое возможно, если у женщины при беременности развилась патогенная микрофлора и в результате несоблюдения гигиены болезнь распространилась на соски. Тогда при кормлении грудью велика вероятность проникновения кандидоза в ротовую полость ребенка. В таком случае начинает развиваться стоматит.

        У женщин кандидоз, обычно, развивается на стенках влагалища

      • Бытовой способ также достаточно часто встречается.
      • Находящаяся в полости рта молочница может передаваться даже через пользование одной ложкой. Среди членов семьи грибок может передаваться через предметы гигиены: полотенца, мочалку и т.д. На фото показаны предметы, которые чаще остальных являются носителями бактерий и грибков, провоцирующих баланит, стоматит и молочницу.

        Лечение заболевания

        В зависимости от места локализации кандидоза лечение проводится по определенному методу:

      • Вагинальный грибок выглядит как белые творожистые выделения на стенках влагалища.
      • Он имеет признаки, характерные для большинства болезней половых органов, и сопровождается характерным неприятным запахом. Вагинальный недуг или молочницу лучше всего пролечивать с помощью курса препаратов, назначенных доктором после проведения полного обследования.

        Если вагинальный грибок не вылечили, он может начать прогрессировать внутрь тканей и привести к значительным эрозиям шейки матки, которые, в свою очередь, могут послужить причиной развития рака.

        К тому же молочница может передаться партнеру, и на головке полового члена выглядит как баланит. Грибок чаще всего провоцирует очаги на коже. На фото показан кандидозный недуг – баланит, первые признаки которого появились в виде творожистых выделений и крапивницы. Такое проявление необходимо лечить специальным противогрибковым кремом.

        На языке кандидоз может развиваться не только у детей, но и у взрослых

      • Если у матери присутствует грибок на сосках, то грудничок, скорее всего, заразится.
      • Кандидозный грибок выглядит как белые очаги внутри рта, при этом отсутствуют любые выделения. Вылечить ребенка от молочницы в полости рта можно с помощью специального состава: доктор рекомендует сделать его на основе 1 таблетки «Фуциса» и ампулы витамина В12. Таким раствором смачивают тампон и обмазывают щеки и язык малыша. Нет смысла мучить ребенка, применяя народный метод лечения – волос, которым срезают творожистую корочку. От этого молочница не только не пройдет, но и превратится в заболевание, сопровождающееся сильной болью.

      • При беременности кандидозный грибок может стать причиной болезни кожи на половых органах.
      • Признаки грибка стандартные – выделения с определенным запахом, зуд. Болезнь при этом выглядит как поражение кожи половых органов. Чтобы кандидозный грибок не представлял угрозы при беременности, необходимо его вылечить как можно быстрее. Он также может появиться на сосках: это выглядит на фото как пузырьки с жидкостью. Избавиться от него можно путем применения специальных мазей. Таблетки будут не только малоэффективными, но и представляют угрозу для нормальной беременности.

      • Баланит, или кандидозный грибок может передаться мужчине от женщины или развиться в результате переохлаждения или падения иммунитета.
      • При этом он выглядит, как покраснение, и может при плохих условиях гигиены локализоваться в полости рта. Стоматит и баланит лечатся специальными кремами.

        Кандида быстро распространяется, но при правильных назначениях также легко и вылечивается. Чаще всего недуг встречается у беременных, поскольку они наиболее подвержены риску, ведь их иммунитет физиологически ослаблен.

        Подпишись и получи сборник лучших статей сайта БЕСПЛАТНО!

        Источник: http://gribkanet.com/molochnica/foto

        Органы выделения человека

        Submitted by admin on Пнд, 20/06/2011 — 10:24

        В процессе жизнедеятельности в организме человека постепенно накапливаются некоторые вредные вещества, главным образом конечные продукты обмена веществ. Они выводятся из организма с помощью специальных органов выделения. Такими органами являются почки. Обе почки расположены на задней брюшной стенке за брюшиной, по обе стороны от верхних поясничных позвонков. Они имеют форму бобов, вогнутый край которых находится с внутренней стороны (рис. 1). В вогнутом крае почки

        находятся маленькие полости — чашечки, которые соединяются в почечную лоханку, куда собирается моча. От лоханки начинается мочеточник – тонкая трубочка, стенка которой состоит из гладких мышц. По мочеточнику моча направляется в мочевой пузырь, который занимает передний отдел тазовой полости. Стенки мочевого пузыря построены тоже из гладких мышц, обладающих способностью сильно растягиваться. В нижней части мочевого пузыря начинается мочеиспускательный канал, через наружное отверстие которого моча выводится наружу.

        Моча образуется в мельчайших почечных канальцах, которыми пронизана вся почечная ткань. Эти канальцы окружены сетью капилляров, отходящих от крупной почечной артерии, приносящей кровь в почку. Составные части мочи образуются из веществ, поступающих из крови капилляров, и попадают в просвет мочевых канальцев, которые соединяются друг с другом, образуя более крупные трубки. По ним моча поступает в почечные чашечки и лоханку.

        Рис. 1. Мочевыделительные органы.

        1 — почка; 2 — почка в разрезе; 3 — брюшная горта и вена; 4 — корковое вещество; 5 — мозговое вещество пирамиды; 6 — сосочки и почечная лоханка; 7 — мочеточники; 8 — мочевой пузырь; 9 — слизистая в полости мочевого пузыря; 10 — надпочечник.

        В сутки организм человека выделяет около 1,5 л мочи. В этом количестве мочи содержится около 30 г мочевины и мочевой кислоты, являющихся конечными продуктами расщепления белков. Поваренной соли в суточной порции мочи содержится около 15 г, кроме того, имеется некоторое количество других солей. Остальное приходится на воду. Белков и сахара в моче здорового человека не содержится; появление их в моче указывает на заболевание почек или других внутренних органов.

        Состав мочи и концентрация ее составных частей зависят. от состояния организма, его обмена веществ: при усиленной работе количество продуктов распада белка увеличивается, моча становится более насыщенной мочевиной При приеме внутрь больших количеств жидкостей моча менее концентрирована. Различные изменения внешней среды тоже сказываются на работе почек. Регуляция деятельности почек осуществляется нервной системой.

        Прекращение работы почек ведет к тяжелому отравлению организма продуктами обмена веществ и быстро влечет за собой смерть. Поэтому нормальная работа почек имеет громадное значение.

        Кожа человека также принимает участие в выведении из организма ненужных и вредных веществ путем выделения пота. Пот образуется в мелких потовых железах, расположенных в толще кожи, и по выводным протокам поступает на поверхность ее. За сутки кожа человека выделяет в среднем около 1 л пота, содержащего те же вещества, что и моча, но в гораздо меньшей концентрации.

        Источник: http://zdorovye.net/node/59

        Это интересно:

        • Женский яичник картинки Женские половые органы К женским половым органам относятся яичники и их придатки, матка и маточные трубы, влагалище, клитор и женская половая область. В зависимости от положения они делятся на внутренние и наружные. Женские половые органы выполняют не только репродуктивную функцию, но и участвуют в […]
        • Инструкция приема фолиевой кислоты Фолиевая кислота Состав В состав таблетки входят 1 или 5 мг активного вещества. Прочие компоненты: декстроза (в форме моногидрата), сахароза, тальк, стеариновая кислота. Форма выпуска Препарат выпускается в таблетированной форме. Таблетки с фаской, имеют плоскоцилиндрическую форму. Цвет их может […]
        • Дюфастон экстренно Зачем нужен эндометрий, каким он должен быть? Эндометрием называют слизистую оболочку внутри матки. Это система, которая состоит из множества компонентов, в частности: Эпителия – покровного и железистого; Кровеносных сосудов; Стромы – опорной, соединительной ткани, которая во время менструации развивается […]
        • Каши для 6-ти месячного Прикорм в 6 месяцев рецепты Жизнь маленького ребенка ежеминутно наполнена чудесами. Самые обычные вещи, происходящие вокруг него, вызывают изумление. Каждая мама стремится порадовать своего ребенка, подарить ему еще одно ощущение радости. Не является исключением и новая пища, которую получает малыш. Дети, […]
        • Дюфастон две полоски Вопрос: Дюфастон и беременность? Добрый день. Принимала дюфастон полгода (с 16 по 25 день, по 2 таблетки утром/вечером) после годового приема регулона. Проблема в маленьком содержании прогестерона из-за чего до полугода не было месячных. С 4-ого месяца приема дюфастона работаем над зачатием ребенка. Тесты […]
        • Желток грудным детям Желток грудничку Начинающие вводить прикорм своим малышам мамы часто запутываются в противоречивых рекомендациях относительно того, когда ребенку можно давать желток. Согласно таблице введения прикорма грудничкам, разработанной Всемирной организацией здравоохранения (ВОЗ), яичный желток можно вводить в […]
        • Грушанки при воспалении яичников Ботаническая характеристика грушанки Грушанка круглолистная — Pyrola rotundifolia L. — многолетнее вечнозеленое травянистое растение из семейства грушанковых (Pyrolaceae) с длинным, тонким, ветвистым корневищем, от узлов которого отходят придаточные корни и надземные стебли. Стебель высотой от 10 до 30 […]
        • Глубина матки у девушек Матка - это орган женского организма, имеющий щелевидную полость. Некоторые женщины и девушки точно не знают, где находится матка. Этот орган располагается в области малого таза, между прямой кишкой и мочевым пузырем. Матка нерожавшей женщины по размерам меньше, весит примерно 50 г, составляет 7 см в длину, […]
        • Индекс артериальной перфузии матки Способ коагуляции сосудов пуповины плода с акардией при синдроме обратной артериальной перфузии Федеральное государственное бюджетное учреждение "Научный центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова" Министерства здравоохранения Российской Федерации (RU) В зависимости от […]
        • График двух овуляций Как правильно читать графики? Соблюдение правил измерения температуры важно для построения надежного графика. Но построив график также важно понять, о чем он говорит. Обычно трактовкой графиков занимается врач-гинеколог. На этой странице Вы найдете основные пояснения к графикам. Учтите, что оценивать […]